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errors up to the truncation error. That second-order non-
conservative scheme was employed by Quirk and KarniConservative Euler solvers for gas mixtures produce numerical

errors near contact discontinuities, if the temperature and the ratio [13] to simulate the interactions of plane shock waves with
of specific heats are not constant there. For mixtures of perfect cylindrical gas bubbles contained in air using adaptive mesh
gases, a simple correction of the total energy per unit volume is refinement. In another approach, Karni [8] solved the con-proposed to avoid these errors. This is done in a physical way and

servation laws augmented by the non-conservative energyonly the total energy looses some of its conservativity. Numerical
equation, identified the vicinity of the contact discontinu-simulations of contact discontinuity convection, a shock tube prob-

lem, and shock-interface interactions in 1D and 2D yield much more ity, and switched there from a conservative formulation to
accurate solutions, if the correction is applied. The straightforward a non-conservative one with regard to the energy equation.
extension to 3D is outlined. Q 1997 Academic Press

Toro [17] used a non-conservative scheme, except for the
vicinity of shock waves where the discretization is switched
to a conservative scheme. However, since most flow solvers1. INTRODUCTION
employ conservative formulations [1, 9, 18] to guarantee,
e.g., correct shock speeds and to take advantage of theFor the computation of reactive flow in combustion and
geometric flexibility of the finite volume concept, a simplein hypersonic aerothermodynamics, the conservation laws
correction procedure of conservative schemes will proba-of species mass, momentum, and energy have to be solved
bly be more useful than changing the whole formulation.[10, 12]. Accurate and robust upwind discretizations of the

Abgrall [2] solves the conservative equations with theinviscid fluxes have been generalized from perfect gas to
classical multispecies Roe scheme, but adds an additionalthermochemical nonequilibrium flows [1, 9, 18]. If such
transport equation for 1/(c 2 1) to update c. Consideringconservative schemes are employed, numerical inaccura-
that the sum of the mass fractions must be one he getscies and oscillations can occur at contact discontinuities
together with the equation for c in mixtures of two perfecteven if diffusion and chemical reactions are not considered
gases two linear equations for two unknowns. However,[1, 5]. The numerical problem was explained in [1, 7]: If a
it is not clear how to treat a problem with three or morecontact discontinuity separating two fluids enters a control

volume, the conservative formulation leads to numerical species where the number of unknowns is higher than
mixing of the fluid due to the averaging process. If the the number of equations. In combustion with complex
two fluids have different c and temperature, the averaged chemistry a small change of the mass fraction of a radical
pressure will be different from the originally constant can lead to inaccurate results.
pressure. We have used physical reasoning to find a simple solu-

Colella, Glaz, and Ferguson [3] derived a multifluid Eu- tion to the problem for mixtures of perfect gases: We deter-
lerian algorithm from a corresponding Lagrangian method. mine the volume flow over each cell interface by decoding
Their volume-of-fluid method assures pressure equilibrium the conservative variables from the fluxes. In each cell, we
among the fluid components, thereby avoiding the numeri- adjust the in- and outgoing volumes such that we arrive
cal problem of conventional conservative schemes at con- at a constant pressure in all fluids. That process turns out
tact discontinuities just mentioned. to be equivalent to volume averaging the pressure. Thereby

Karni [7] solved the problem by employing a non-conser- the convection of the internal energy is taken into account.
vative formulation, which accounts for the conservation Adding the kinetic energy flux and the rate of work done

by the pressure forces, we arrive at a simple correction of
the total energy per unit volume.1 Current address: Faculty of Applied Mathematics, University of

Twente, NL-7500 AE Enschede, The Netherlands. Algorithmically, the correction can be easily imple-
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92 JENNY, MÜLLER, AND THOMANN

mented in the explicit finite volume discretization of the laws of species mass, momentum, and energy for inviscid
1D flow of a mixture of two perfect gases constitute theenergy equation: the internal energy density at the old

time level 1D Euler equations for two species. Expressed in differen-
tial form they read

(re)n 5
pn

c n 2 1 U
t

1
f
x

5 0, (1)

is replaced by
where

pn

c n11 2 1

and the internal energy flux difference U 5 1
r1

r2

ru

rE
2 and f 5 1

r1u

r2u

ru2 1 p

u(rE 1 p)
2 . (2)

D(rue)n 5 D S up
c 2 1Dn

The vector of the conservative variables U contains r1 andis replaced by
r2 , i.e., the mass densities of species 1 and 2, respectively,
density r 5 r1 1 r2 , velocity u, and the total energy per
unit mass E 5 e 1 u2/2, where e is the internal energy per

D(up)n

c n11 2 1
.

unit mass. The pressure p appearing in the flux vector f is
given by the equations of state for a perfect gas mixture

The flow variables at the cell interfaces have to be decoded
from the numerical flux, if they are not directly given by
the numerical flux evaluation. c n11, the ratio of specific p 5 (c 2 1) SrE 2

r

2
u2D5 rRsT, (3)

heats in the considered cell at the new time level, is deter-
mined by the species continuity equations. For a perfect

where c, Rs , and T denote the ratio of specific heats, specificgas with constant c, the correction vanishes as it should
gas constant, and temperature, respectively. Rs , the specificbe, because then no problems at the contact discontinu-
heat at constant pressure cp , and c 5 cp/cv are given byities arise.

This correction step can easily be added to explicit con-
servative multi-component flow solvers after each time Rs 5

Ru

r
O2
j51

rj

Wj
cp 5

1
r
O2
j51

rjcpj
c 5

cp

cp 2 Rs
. (4)

step. It is extendable to 2D and 3D. The conservativity
error is shown to be zero, if the temperature or c is con-

Ru denotes the universal gas constant. W1 and W2 , thestant. No negative effects of some loss of conservativity in
molecular weights of species 1 and 2, are in general notthe energy equation have been encountered, if the temper-
equal. cp1

and cp2
, the specific heats at constant pressureature and c are not constant.

of the species, are assumed to be constant.In Section 2, the Euler equations for a mixture of perfect
gases are stated. The conservative Euler solver is described

3. CONSERVATIVE EULER SOLVERin Section 3. In Section 4, the origin of the error at contact
discontinuities is outlined. Sections 5 and 6 describe the

An explicit conservative discretization leads tocorrection algorithm of a conservative Euler solver in 1D
and its extension to multi-dimension, respectively. The re-
sults presented in Section 7 show that applying the correc- Un11

i 5 Un
i 2

Dt
Dx

(fn
i11/2 2 fn

i21/2) (5)
tion leads to more accurate results. Conclusions are given
in Section 8.

which is typical for finite volume methods. Un
i is an approxi-

mation of the cell average (1/Dx) exi11/2

xi21/2
U(x, n Dt) dx in2. EULER EQUATIONS FOR A GAS MIXTURE

cell i at the time n Dt. The numerical fluxes fi11/2 and
fi21/2 at the right and left cell interfaces xi61/2 , respectively,We restrict our presentation for simplicity to only two

species and one dimension in space, but there is no differ- approximate the fluxes (1/Dt) e(n11) Dt

n Dt f(xi61/2 , t) dt. Here
the numerical fluxes are determined with Roe’s approxi-ence to problems with several species in two or three di-

mensions, as we shall see in Section 6. The conservation mate Riemann solver for multiple species [14, 9]:
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fi11/2 5
1
2

[f(Ui11/2,R) 1 f(Ui11/2,L)

2 uÂi11/2 u (Ui11/2,R 2 Ui11/2,L)].

Âi11/2 is the Jacobian matrix of f evaluated at the Roe
average of Ui11/2,L and Ui11/2,R . For first order, Ui11/2,L 5
Ui and Ui11/2,R 5 Ui11 .

To achieve second order in space, the MUSCL ansatz
with the minmod limiter has been employed. It is important
that the primitive variables are used for the extrapolation
to avoid problems with wrong pressures when employing
the conservative variables. Thus the Riemann problem at
the right cell interface xi11/2 is determined by the following
values of V 5 (r, r1/r, u, p),

Vi11/2,L 5 Vi 1 minmod SVi 2 Vi21

xi 2 xi21
,
Vi11 2 Vi

xi11 2 xi
D (xi11/2 2 xi)

FIG. 1. (a) Riemann problem of a contact discontinuity at the left
interface. (b) Contact discontinuity at t 5 Dt (pl 5 pr).Vi11/2,R 5 Vi11 2 minmod SVi12 2 Vi11

xi12 2 xi11
,
Vi11 2 Vi

xi11 2 xi
D (xi11 2 xi11/2)

with
with rn11

i 5 rn11
1i

1 rn11
2i

5 srl 1 (1 2 s)rr .
The partial densities rn11

1i
and rn11

2i
show that for 0 ,

s , 1 the contact discontinuity is smeared, because it is
minmod(a, b) 5 1

a if (uau # ubu) and (ab . 0)

b if (ubu , uau) and (ab . 0)

0 if (ab # 0)

captured and not tracked. However, we are more con-
cerned about velocity and pressure. Clearly, un11

i 5 u, but

and xi the location of the cell midpoint.
pn11

i 5 (c n11
i 2 1) Srn11

i E n11
i 2

u2

2
rn11

i D5 p(1 1 «p), (7)

4. ORIGIN OF THE ERROR AT
CONTACT DISCONTINUITIES where

We consider a contact discontinuity with species 1 and 2
on the left and right sides, respectively, propagating from «p 5

pn11
i

p
2 1 5

srlR1 1 (1 2 s)rrR2

srlcn1 1 (1 2 s)rrcn2
S s

c1 2 1
1

1 2 s

c2 2 1D2 1
left to right at constant velocity u and constant pressure p.
At time t 5 n Dt, let the contact discontinuity coincide with

5
s(1 2 s)(rlR1 2 rrR2)
srlcn1 1 (1 2 s)rrcn2

S 1
c2 2 1

2
1

c1 2 1D .a certain cell interface xi21/2 . Thus, the Riemann problem is
defined by the left and right states (Fig. 1a). Suppose we
choose s 5 u Dt/Dx , 1 for stability reasons, the contact

Using the equations of state for a perfect gas, rRs 5 p/T anddiscontinuity will move from xi21/2 to the location xi21/2 1
p/(rcn) 5 T(c 2 1), we obtain for the relative pressure erroru Dt in cell i during one time step (Fig. 1b). Thus, the exact

fluxes during the next time step are here fi11/2 5 f(Ur) 5
uUr 1 p(0, 0, 1, u)T and fi21/2 5 f(Ul) 5 uUl 1 p(0, 0, 1, u)T.

«p 5 s(1 2 s)
(Tr 2 Tl)(c1 2 c2)

s(c2 2 1)Tr 1 (1 2 s)(c1 2 1)Tl
. (8)We obtain from (5) with Godunov’s or Roe’s first order

methods, which coincide at contact discontinuities and
shocks, Thus, the error in pressure after one time step of the

conservative Euler solver (5) is zero, if at least one of the
following conditions holds:Un11

i 5 Ur 2 s(Ur 2 Ul) 5 Ssrl , (1 2 s)rr , urn11
i , s(re)l

(6) • the contact discontinuity does not move, i.e., s 5 0,

• the contact discontinuity moves to the next cell inter-1 (1 2 s)(re)r 1
u2

2
rn11

i DT

face, i.e., s 5 1,
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• the temperatures on both sides are equal, i.e., F 5 f(U)h corresponds to four equations for the four
unknowns r1 , r2 , ru, and rE:Tl 5 Tr .

• the ratios of specific heats of the species are equal,
F1 5 r1uh (9)i.e., c1 5 c2 .
F2 5 r2uh (10)

Similar investigations were made in [1, 7]. Here the role
F3 5 ru2h 1 ph (11)of the temperature in «p is realized. If 0 , s , 1, Tl ? Tr ,

and c1 ? c2 , the conservative Euler solver does not main- F4 5 u(rE 1 p)h. (12)
tain constant pressure, but yields the relative pressure er-
ror «p . If u is not zero, we get with Eqs. (4), (9), and (10),

Relating pn11
i to twice the dynamic pressure ru2 shows

that the pressure error becomes more significant for low
Mach numbers M since (pn11

i 2 p)/(ru2) 5 «p/(cM2). In (c 2 1)21 5
cp

Rs
2 1 5

F1cp1
1 F2cp2

Ru(F1/W1 1 F2/W2)
2 1. (13)

the second time step, the pressure error p induces velocity
errors u p 6p/(rc) propagating up- and downstream,

If u is zero, there is no need in evaluating c or one of therespectively, due to the acoustic disturbance. Thereby, also
other variables, as the flux in the energy equation is zerothe velocity becomes contaminated. Our first numerical
(e.g., Eqs. (22) and (31) below).example in Section 7 will illustrate these errors.

With Eqs. (9) and (10) we get

5. THE CORRECTION ALGORITHM
ru 5

F1 1 F2

h
. (14)

To apply the present correction algorithm, the flow vari-
ables at the cell interfaces have to be known. Therefore,

The pressure is obtained using Eqs. (11) and (14),Subsection 5.1 explains how to decode the conservative
variables, if only the flux is known, e.g., Roe’s flux. How-
ever, if the flow variables are provided by the numerical p 5

F3

h
2

(F1 1 F2)2

rh2 . (15)
flux evaluation, e.g., Godunov’s method, the reader can
directly proceed to Subsection 5.2. There, the total energy
per unit volume rE is corrected to maintain constant pres- Equation (3) yields
sure and therefore also constant velocity over a contact
discontinuity, if the ratios of specific heats and the tempera-

rE 5
p

c 2 1
1

r

2
u2. (16)tures on both sides differ. Thereby, a conservation error

is introduced, which is analyzed in Subsection 5.3.
Inserting rE given by (16) in Eq. (12) and replacing the
pressure and velocity by (15) and (14), respectively, we5.1. Flow over the Cell Interfaces
get a quadratic equation for r:

Suppose the integral over the cell interface at xi11/2 (Fig.
1b) eh

0 f(xi11/2 , y, t) dy is approximated by F 5 fi11/2h with
the numerical flux fi11/2 , which depends on the conservative 0 5

F4

F1 1 F2
r2 1

2cF3

(c 2 1)h
r

(17)variables in the neighboring cells Ui , Ui11 , etc. Knowing
F 5 (F1 , F2 , F3 , F4)T 5 fi11/2h and the functional depen-

1
(F1 1 F2)2

h2

c 1 1
2(c 2 1)

5 ar2 1 br 1 c.dence of the flux f on the conservative variables U from
Eq. (2), we look for the root of the equation F 5 f(U)h
which provides us with the conservative variables at the If the discriminant
considered cell interface.

The numerical flux fi11/2 needs not to be Roe’s but it
can be any consistent one. Note that with Roe’s flux, except D 5 4F4 S c 1 1

2(c 2 1)D F1 1 F2

h2 2 S cF3

(c 2 1)hD2

5 4ac 2 b2

for UL 5 UR , the Roe average Û does not yield the conser-
(18)vative variables U at the interface but the state for which

is negative, we have two solutions, of the form
f(Ur) 2 f(Ul) 5 A(Û)(Ur 2 Ul)

r6 5
2b 6 Ïb2 2 4ac

2a
.

nor does A21(Û)fi11/2 5 A21(Û)A(U)U yield U.
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To figure out whether the larger or the smaller root is the
physical one, we first check the larger one r 5 r1,

r .
2b
2a

5
cu(r2u2 1 rp)

2u(c 2 1)(rE 1 p)

which turns out to be equivalent to M2 , 1, where M is
the Mach number. The smaller root r 5 r2 corresponds
to M2 . 1. Thus, r 5 r1, if we have subsonic flow, and
r 5 r2, if we have supersonic flow. If the discriminant D
is zero, there is no ambiguity in the solution of Eq. (17).
D 5 0 corresponds to sonic flow M 5 1. But if the discrimi-
nant is positive, there exist complex roots of Eq. (17). Then

2D 5 b2 2 4ac 5
1

(c 2 1)2 (cru2 1 cp)2

FIG. 2. (a) General situation at t 5 Dt (pl ? pr). (b) Modification of
volumes at t 5 Dt to achieve pl 5 pr .

2 2
c 1 1
c 2 1

(r2u2E 1 ru2p) , 0

Since in general D , 0, we usually have two solutions,leads to
one subsonic and one supersonic. We need an additional
criterion to choose the relevant one. For simplicity, weS 1

M2 2 1D2

, 0. decided to determine the Mach number approximately
from the Roe average M P M̂ 5 û/ĉ. According to our

As (1/M2 2 1)2 cannot be negative, the solution of Eq. experience, the approximation of M by M̂ has worked well
(17) is nonphysical, if D is positive. Such a nonphysical for all test cases. The situation encountered here is similar
result would not occur, if we applied an exact Riemann to isentropic outflow from a stagnation chamber: for a
solver, e.g., Godunov’s, or an approximate one like Pan- given mass flow we usually have two solutions, one sub-
dolfi’s, see [11] (except for a compression wave approxi- sonic and one supersonic. If the mass flow is equal to the
mated by a converging fan with a sonic point at the inter- critical mass flow, we have one solution at sonic condition.
face), which yield the flow state at the cell interface to If the mass flow is larger than the critical mass flow, we
calculate the flux. However, with Roe’s approximate Rie- have no solution, to be precise, no steady 1D solution [16].
mann solver, such a nonphysical result can occur in expan- Having determined c with Eq. (13), r with Eq. (19), and
sion fans, since the approximation of a fan by a discontinu- ru with Eq. (14), we can figure out p and rE with Eqs.
ity can lead to errors. Sod’s shock tube problem (pl/pr 5 (15) and (16), respectively. Knowing u, r1 , and r2 can be
10, rl/rr 5 8, ul 5 ur 5 0, c 5 1.4) provides an example, determined with Eqs. (9) and (10), respectively, if u ? 0.
where Roe’s approximate Riemann solver yields D . 0 at Thus, we can describe the fluid flowing through each side
the diaphragm. Other problems with Roe’s approximate of the control volume.
Riemann solver in expansion fans are the necessity of an

5.2. Correction of Total Energy per Unit Volumeentropy fix to avoid expansion shocks [6] and the failure
of linearizations near low densities [4]. If D is larger than Figures 1 and 2 illustrate the basic idea of the correction
zero, the correction procedure outlined in subsection 5.2 algorithm. The rectangular box represents the cell. We
is not used. But since the problem of conservative Euler consider a flow in a tube of height h with constant pressure
solvers for gas mixtures can only occur at contact disconti- and velocity. Let’s assume that there is a contact disconti-
nuities, no correction is necessary in expansion fans pro- nuity at the left side of cell i which separates two fluids
vided there is no interaction with a contact discontinuity. with different ratios of specific heats and with different

Summarizing, the solution of Eq. (17) reads temperatures (Fig. 1a). After one time step one part of
cell i is filled with the fluid on the left of the contact
discontinuity and one part with the fluid on the right of
the contact discontinuity (Fig. 1b). If we average the con-
servative variables and figure out the pressure with ther 51

complex if (D . 0)

2b 1 Ïb2 2 4ac
2a

if (D # 0) and (M # 1)

2b 2 Ïb2 2 4ac
2a

if (D # 0) and (M . 1).

(19)
laws of perfect gas mixtures, we get a pressure different
from p according to Eq. (7) (excluding a situation, where
the relative pressure error in Eq. (8) is zero).
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However, if we modify the calculation of the internal we obtain
energy assuming the ratios of specific heats to be equal to
the cell averaged value c n11

i , i.e., by replacing (re)l,r 5
p* 5

plVoll 1 pVol 1 prVolr

Vol
.p/(cl,r 2 1) by p/(c n11

i 2 1), we obtain pn11
i 5 (c n11

i 2
1)(re)n11

i 5 (c n11
i 2 1)[sp/(c n11

i 2 1) 1 (1 2 s)p/(c n11
i 2

1)] 5 p.
If we have a flow out of the volume at either side of theTo generalize the problem, we look at a situation where
cell, the corresponding volume Voll or Volr in the equationwe have two regions with different pressures in a cell (Fig.
above becomes negative. Expressing Voll and Volr by2a). The volumes occupied by the fluids on the left and
ulh Dt and 2 urh Dt, respectively, we obtainthe right sides are Voll 5 hu Dt and Volr 5 h(Dx 2 u Dt).

Instead of figuring out the average pressure with the aver-
aged conservative variables and the perfect gas law, we p*i 5 pn

i 2
Dt
Dx

D(up) (22)
adapt the volumes Voll and Volr in order to have the same
pressure p in the modified volumes Vol*l and Vol*r . The with
velocity u is assumed to be constant in the whole cell
(Fig. 2b). D(.) 5 (.)n

r 2 (.)n
l 5 (.)n

i11/2 2 (.)n
i2(1/2) .

We imagine the contact discontinuity to be a piston that
is free to adjust to a position so that the pressure is equal The velocity and the pressure have to be figured out for
on both sides. Requiring in addition that the internal ener- each side to evaluate the pressure p*. It turns out that the
gies in Vol*l and Vol*r are the same as in Voll and Volr , present procedure to determine the pressure p* near a
respectively, we get the following conditions for Vol*l and contact discontinuity leads to the same result as many
Vol*r : multifluid Lagrangian–Eulerian procedures after the La-

grangian step (according to [3]). But the advantage of our
algorithm is that there is no need to track the contact

(cl 2 1)
Voll

Vol*l
(re)l 5

Voll

Vol*l
pl 5 p*

discontinuity. Further we need no additional differential
equations and only the discretization of the energy equa-
tion has to be slightly modified.

(cr 2 1)
Volr

Vol*r
(re)r 5

Volr

Vol*r
pr 5 p*.

Equation (22) can also be viewed as originating in the
explicit discretization of

Using Vol*r 5 Vol 2 Vol*l , we obtain from these equations p
t

1
(up)

x
(23)

Vol*l 5
plVollVol

plVoll 1 prVolr
(20) by

pn11
i 2 pn

i

Dt
1

D(up)
Dx

(24)and therefore we get

if we set Eq. (24) equal top* 5
plVoll 1 prVolr

Vol
. (21)

pn11
i 2 p*i

Dt
(25)

Equation (21) is easily extendable to more than two vol-
umes. We assume that the amount of reVol which was in
Vol at the beginning of the time step keeps constant if Vol to define the ‘‘convected’’ pressure p*i . Now we use the
changes to Vola 5 Vol 2 Voll 2 Volr , where Voll and Volr product rule to express the conservative form of the con-
are the volumes of the fluid which flows in during the time vection of the internal energy re 5 p/(c 2 1) in non-
step at the left and right sides of the cell, respectively. conservative form
Then we obtain for Vola the pressure pa 5 pVol/Vola where
p denotes the pressure in the cell at the beginning of the 

t S p
c 2 1D1



x S up
c 2 1D5

1
c 2 1 Fp

t
1

(up)
x G

(26)
time step. Substituting this in

1 p F

t S 1
c 2 1D1 u



x S 1
c 2 1DG .p* 5

plVoll 1 paVola 1 prVolr

Vol
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FIG. 3. Convection problem with two species without correction.

The right hand side of Eq. (26) simplifies, because the 1
cn11

i 2 1 Spn11
i 2 pn

i

Dt
1

D(up)
Dx D5

1
cn11

i 2 1
pn11

i 2 p*i
Dt

. (29)second term in brackets vanishes:

Employing here c n11
i , i.e., the cell averaged ratio of specific

t S 1
c 2 1D1 u



x S 1
c 2 1D5 0. (27)

heats at the new time level, with a conservative scheme
guarantees constant pressure at a contact discontinuity.
Using rE 5 re 1 ru2/2, the energy equation readsEquation (27) holds, as c is convected with the flow. Ab-

grall [2] uses (27) to update c. Then, we discretize the
convection of the internal energy

re
t

1


ru2

2
t

1
rue

x
1


ru3

2
x

1
up
x

5 0. (30)
re
t

1
(rue)

x
(28)

Until now we have only considered the convection of the
internal energy, i.e., the first and the third terms of Eq.in the energy equation not by discretizing the conservative

form (i.e., the left hand side of (26)), but because of (27) (30), but not the convection of the kinetic energy (second
and fourth terms) and the rate of work done by the pressureby discretizing the first term of the non-conservative form

(i.e., the first term on the right hand side of (26)) using forces (fifth term).
With (29) and conventional explicit discretizations for(24) and equivalently (25),
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FIG. 4. Convection problem with two species with correction.

the other terms, we obtain for the corrected total To compute (rE)c
i we have to know r, u, and p at the cell

interfaces. Here, the decoding of the flow variablesenergy per unit volume for inviscid flow of perfect gas mix-
tures from the numerical fluxes comes into play (cf. Subsection

5.1.).
For the Navier Stokes equations we have also to consider

(rE)c
i 5

pn11
i

c n11
i 2 1

1
1
2

(ru2)n11
i 5

p*i
c n11

i 2 1
(31)

the heat flux q and the work done by the viscous forces

1
1
2

(ru2)n
i 2

Dt
Dx

D S1
2

ru3 1 upD . D(rE)n
i 5

Dt
Dx

D(t ? u 2 q)
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and for the nonequilibrium chemistry the heat release Since Eq. (34) constitutes the explicit discretization of Eq.
(27), the conservation error will be small. If T is constant
and together with

D(rE)s
i 5 Dt q̇i ,

where t is the stress tensor and q̇ is the heat release rate due (rRs)n11
i 5 Ru O2

j51

rn11
ji

Wj
5 Ru O2

j51

rn
ji

2
Dt
Dx

D(urj)

Wjto the chemical reactions. Thus we calculate the corrected
energy from:

5 (rRs)n
i 2

Dt
Dx

D(urRs)

(rE)n11
icorr

5 (rE)c
i 1 D(rE)n

i 1 D(rE)s
i . (32)

(rcp)n11
i 5 O2

j51
rn11

ji
cpj

5 O2
j51
Srn

ji
2

Dt
Dx

D(urj)D cpj

5.3. Error Analysis
5 (rcp)n

i 2
Dt
Dx

D(urcp)
(rE)n11

icons
and (rE)n11

icorr
are the total energies per unit vol-

ume at the time level n 1 1 derived with a conservative
andformulation and the corrected one, respectively. For the

time integration the explicit Euler scheme has been em-
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i 5 (rcp 2 rRs)n11
i 5 (rcp 2 rRs)n

iployed.

2
Dt
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the result (33) reduces to
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Now we can derive the difference between these two total
energies per unit volume:
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ierror
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cn11 2 1 D2 STr
Rs

c 2 1Dn

i

(33)

1
Dt
Dx

D STur
Rs

c 2 1D
5 S pn

i

c n11
i 2 1

2
pn

i

cn
i 2 1D2

Dt
Dx S D(up)

cn11
i 2 1

2 D S up
c 2 1DD .

Assuming D (up/(c 2 1)) P D(up)/(c n11
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(c 2 1)), the error (rE)n11
icons

is proportional to

FIG. 5. Riemann problem with correction (100 cells).
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uiD S 1
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FIG. 6. Comparison of the corrected and the uncorrected solutions
FIG. 7. Comparison of the correct and the uncorrected solutions withwith the exact one near the contact discontinuity (100 cells).

the exact one near the contact discontinuity (200 cells).

The same result is obtained with a constant c. Thus, the F3 5 u ? s ru 1 ps1 (37)
conservation error in the energy equation given in Eq. (33)

F4 5 u ? s rn 1 ps2 (38)is zero, if the temperature is constant or if c is constant.
Since rj and ru are calculated from conservative F5 5 u ? s rw 1 ps3 (39)

schemes, there are no conservation errors in the species
F6 5 u ? s (rE 1 p). (40)continuity and momentum equations whatsoever.

If u ? s 5 us1 1 ns2 1 ws3 , the normal velocity scaled by6. EXTENSION TO MULTI-DIMENSIONS
the area of the cell interface, is not zero, we get as in 1D
with Eqs. (4), (35), and (36)To apply the present correction algorithm in 3D, the

same procedure can be applied as in 1D. The only thing
that changes is the decoding of the conservative variables
from the flux, if this is necessary. At the considered cell (c 2 1)21 5

cp

Rs
2 1 5

F1cp1
1 F2cp2

Ru(F1/W1 1 F2/W2)
2 1. (41)

interface, let F 5 f(U)s1 1 g(U)s2 1 h(U)s3 be the known
flux. s 5 (s1 , s2 , s3)T denotes the surface normal of the cell
interface in Cartesian coordinates. f, g, and h denote the If u ? s is zero, there is no need in evaluating c or one of
flux vectors in the x-, y-, and z-directions, respectively,
of the 3D Euler equations for two species in Cartesian
coordinates. Here we look for the root of the equation

TABLE IF 5 f(U)s1 1 g(U)s2 1 h(U)s3 which provides us with the
conservative variables for 3D flow at the considered cell Total Energy Errors with Corrected and Uncorrected Schemes
interface. This corresponds to six equations for the six

No. of cells Corrected Uncorrectedunknowns r1 , r2 , ru, rn, rw, and rE:

50 2.66 3 1022 4.69 3 1022

100 1.10 3 1023 1.43 3 1022F1 5 u ? s r1 (35)
200 2.99 3 1024 7.57 3 1023

F2 5 u ? s r2 (36)
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FIG. 8. Initial condition for the interaction of a shock wave with an air/helium contact discontinuity.

the other variables, as the flux in the energy equation is and
zero. Equations (35) and (36) yield

u ? b 5
G ? b

F1 1 F2
. (44)

u ? s 5
F1 1 F2

r
. (42)

Once the density is known, the Cartesian velocity compo-
nents u, v, and w can be determined by solving the linear

We define two tangential vectors a and b of the cell system (42), (43), (44).
interface such that s, a, and b form an orthogonal basis. The pressure can be decoded by forming the scalar prod-
For convenience, we scale a and b such that uau 5 uct of the momentum flux G with the surface normal s and
ubu 5 usu. using Eqs. (37), (38), (39), and (42),

Forming the scalar products of the momentum flux
G 5 (F3 , F4 , F5)T with a and b, respectively, we obtain

p 5
G ? s 2 (F1 1 F2)2/r

s ? s
. (45)from Eqs. (37), (38), (39), and (42)

Since uuu2 5 ((u ? s)2 1 (u ? a)2 1 (u ? b)2)/s ? s, we get usingu ? a 5
G ? a

F1 1 F2
(43)

Eq. (3) applied in 3D,
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c n 2 1 in the cell and at the cell interfaces by c n11 2
1 in the cell.

7. RESULTS

Five test cases have been chosen to show the difference
between results obtained with and without corrections.
The scheme is of second order in space and first order in
time. The CFL number is about 0.3.

7.1. Convection Problem

The first example is a simple convection problem. A
contact discontinuity is transported in a tube. The fluid
has initially constant velocity, pressure, and density in the
whole tube. The ratio of the temperature of the right and
the left sides is 2, and c is 1.4 on the left and 1.2 on the
right side. Figure 3 shows the result after 1, 2, and 3 time
steps without correction near the contact discontinuity at
x 5 0.045. The distance 0.09 is discretized by 200 cells.
After one time step the velocity is still constant, but there
arises a pressure peak as predicted by Eq. (8), which entails
a change in velocity. This error increases with time and

FIG. 9. Interaction of a shock wave with an air/helium contact discon- usually leads to oscillations.
tinuity with correction.

In Figure 4 we can see that we get rid of this error if
we apply the correction (Eq. (31)) of the total energy per
unit volume. The results after 0, 100, and 200 time steps
are plotted and not the slightest oscillations are observed.

rE 5
p

c 2 1
1

r

2
(u ? s)2 1 (u ? a)2 1 (u ? b)2

s ? s
. (46)

Inserting rE given by (46) in Eq. (40) and replacing the
pressure by (45) and the velocity components by (42), (43),
and (44), we obtain a quadratic equation for r similar to
Eq. (17) with the coefficients

a 5
F5

F1 1 F2
2

1
2

(G ? a)2 1 (G ? b)2

(F1 1 F2)2s ? s

b 5
2c

c 2 1
G ? s
s ? s

(47)

c 5
c 1 1

2(c 2 1)
(F1 1 F2)2

s ? s
.

Then the density is obtained from Eq. (19).
In 2D the equations simplify, because w, s3 , a3 , F5 , and

G ? b are zero and we can choose s 5 (Dy, 2Dx, 0)T and
a 5 (Dx, Dy, 0)T, if a defines the cell interface. For more
than two, say m species, m species mass fluxes instead of
the two given by Eqs. (35) and (36) will enter Eqs. (41)
to (47).

All the rest remains similar to 1D. Namely the species
continuity and momentum equations are discretized as
in a conventional finite volume method. Only the discreti- FIG. 10. Comparison of the corrected and the uncorrected solutions

with the exact one near the contact discontinuity at x 5 0.23.zation of the energy equation is modified by replacing
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FIG. 11. The 2D convection of a bubble in a supersonic flow (100 3 100 cells).

The plot of c shows how the contact discontinuity propa- ratio of the left and right sides is ten, the density on the
left side is eight times larger than the density on the rightgates. The velocity and the pressure remain constant. The
side, the temperature on the right side is 1.6 times highertemperature discontinuity propagates similar to c.
than on the left side, and c is 1.4 on the left and 1.2 on
the right side [1, 7, 17]. Figure 5 shows the results with the7.2. Shock Tube Problem
correction (31). The solid lines depict the numerical results

The second case is the classical shock tube problem. after 7 3 1025s, while the dashed lines are the exact
solutions. The subscript L denotes the initially constantInitially the velocity is zero in the whole tube, the pressure
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FIG. 12. The 2D test case of the interaction of a planar shock with an oblique contact discontinuity.

FIG. 13. Comparison of the corrected and the uncorrected density
FIG. 14. Comparison of the corrected and the uncorrected 2D solu-contours of the 2D interaction of a planar shock with an oblique contact

tion along a cut diagonal to the grid.discontinuity (100 3 100 cells).
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200 cells, the corrected scheme tends to almost second
order accuracy.

7.3. Interaction of a Shock with an Air/Helium Interface

The third test case considers the interaction of a shock
wave with a contact discontinuity. A shock moving with a
shock Mach number of 1.65563 from left to right in air
hits an air/helium interface (Fig. 8). Related interactions
of planar shocks with interfaces were studied in [8]. We
initialized the moving shock by using the numerical solu-
tions of the classical shock tube problem, i.e., our second
test case in air with c 5 1.4 on both sides of the diaphragm.

A smeared shock profile with 2 points inside the numeri-
cal shock layer was used to avoid the problem of Roe’s
approximate Riemann solver, which is shared by the Godu-
nov method, with sharp initial conditions for slowly moving
shock waves [15]. When using a discontinuous initial shock
profile, a velocity overshoot produced in the discrete shock
layer in the second time step generated pressure and den-
sity valleys and a velocity bump. The pressure and density
valleys and the velocity bump travel at the speed u 2 c of
an acoustic wave and another density valley travels at the
speed u of a contact discontinuity.

After the interaction of the shock wave with the air/

FIG. 15. Surface plot of the x-component of the velocity field near
the interaction point without correction.

state of the left hand side of the diaphragm, where we
chose pL 5 1 bar and rL 5 1 kg/m3 and where cL 5
ÏcLpL/rL is the speed of sound. The distance 0.09 m is
discretized by 100 cells. While the solutions without correc-
tion show an error near the contact discontinuity in the
velocity and the density plots, which is caused by mixing
of species with different c and temperature, in Fig. 5 almost
no error is observed. Figure 6 (100 cells) and Fig. 7 (200
cells) give a closer look near the contact discontinuity.
They compare the solutions with and without correction
with the exact solution. Without correction, the numerical
error near the contact discontinuity is only slightly reduced
with mesh refinement. However, with correction that error
is almost eliminated on the finer grid. Even near the begin-
ning of the expansion fan, the correction algorithm yields
more accurate results than the uncorrected conservative
Euler solver.

To show grid convergence, we computed the same shock
tube problem on 3 different grids, one with 50 cells, one
with 100, and one with 200 cells. In Table I we show the
average value of u(rE 2 rEexact)/rEexactu between the
expansion fan and the contact discontinuity. Table I indi-
cates that the corrected scheme leads to more accurate
results than the uncorrected one. Whereas the latter is only FIG. 16. Surface plot of the x-component of the velocity field near

the interaction point with correction.first order accurate for the mesh refinement from 100 to
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helium contact discontinuity at x 5 20.3 m the same wave
pattern as for the shock tube problem is observed. Figure
9 shows the computed results with correction after
1.725 3 1024s using 100 cells. The dashed lines indicate
the exact solution. A closer look at velocity and pressure
near the contact discontinuity (Fig. 10) shows the improved
results due to the correction algorithm. The error of the
conservative scheme in velocity and pressure near the air/
helium interface is almost eliminated with the correction.
Note that the slope of the velocity of the uncorrected
conservative scheme near the contact discontinuity for the
third test case with cL , cR (Fig. 10) is of opposite sign
compared with the corresponding result for the second test
case where cL . cR (Figs. 6 and 7). Without correction,
the pressure near the contact discontinuity is predicted too
small for cL , cR (Fig. 10), whereas for cL . cR the
uncorrected pressure is too large (Figs. 6 and 7) confirming
the analysis of Section 4 because TR . TL in both cases.

FIG. 17. Contour plot of the pressure near the interaction pointSince the error in density of the uncorrected conservative
without correction.scheme is largest at the beginning of the expansion fan,

we present the comparison of the density near that region
illustrating the improvement by the correction algorithm
(Fig. 10). The contact discontinuity in the density plot of test case because there exists an exact solution to compare
this figure seems to be in the wrong location because we with. The shock Mach number is 2. The initial conditions
zoomed in on the higher values of density. In fact the and the exact solution are sketched in Fig. 12. The results
contact discontinuity is symmetrically smeared about the shown in Figs. 13–18 were obtained on a 100 3 100 grid
correct location (Fig. 9). The waves between the shock and (Dy 5 Dx tan(508)) after 500 time steps corresponding to
the expansion fan (Fig. 10) seem to be of the same origin t 5 0.00125 s after the beginning of the simulated interac-
as the ones described for the incident shock above. In tion. The solid density contours of the levels 3 kg/m3, 4.5
summary, the improved results near the air/helium inter- kg/m3, and 15 kg/m3 in Fig. 13 represent the result obtained
face demonstrate that the correction algorithm also works with the corrected scheme, and the dashed contours those
for the interaction of a shock wave with a contact disconti- of the uncorrected one. The markers indicate the exact
nuity.

7.4. Convection of a Fluid Bubble in 2D

As in our first 1D test case, we look at a field of constant
pressure and velocity (Fig. 11). But within a quadratic
bubble of different fluid, the ratio of specific heats c and
the temperature are different from those of the sur-
rounding fluid. This time we have supersonic flow at M 5
1.89, but again we expect that pressure and velocity remain
constant and that the bubble moves with the velocity of
the fluid. If we apply a conservative scheme without any
correction, we run into the same problem we outlined
before (Fig. 11, left side) and which we can eliminate by
applying our correction (Fig. 11, right side). The dashed
lines in Fig. 11 show the initial location of the bubble,
whereas the solid lines show the contour line c 5 1.25
after 1026s.

7.5. 2D Interaction of a Shock with a
Contact Discontinuity

The fifth test case is a 2D interaction of a planar shock FIG. 18. Contour plot of the pressure near the interaction point
with correction.with an oblique contact discontinuity. We have chosen this
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perfect gas, Rech. Aérospat. 6, 31 (1988).

ity, and the temperature along a cut diagonal to the grid
2. R. Abgrall, How to prevent pressure oscillations in multicomponentlines (Fig. 13), where the solid lines represent the corrected

flow calculations: A quasi conservative approach, J. Comput. Phys.
solution and the dashed lines the uncorrected one. The 125, 150 (1996).
dashed pointed lines show the exact solution. Again the 3. P. Colella, H. M. Glaz, and R. E. Ferguson, Multifluid algorithms
corrected results are more accurate than the uncorrected for Eulerian finite difference methods, unpublished manuscript, 1989.
ones. Finally Figs. 15, 16, 17, and 18 give a closer look at 4. B. Einfeldt, C. D. Munz, P. L. Roe, and B. Sjögreen, On Godunov-
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